

Ammonia, Carbon Capture and Gas Turbine ensure United States Energy Independence

Edgar Vercruyse, Ir. UG
Luc Vercruyse, Ing.
Emmanuel De Neyer, Ir. UCL

September 2012

Table of contents

1	INTRODUCTION.....	3
2	REPORT OBJECTIVES.....	4
3	GREEN AMMONIA PRODUCTION FROM COAL.....	5
3.1	DESCRIPTION OF THE AMMONIA PRODUCTION PROCESS	5
3.2	GASIFICATION: H ₂ PRODUCTION PROCESS.....	6
3.3	CARBON STORAGE AND SEQUESTRATION.....	7
3.4	NH ₃ PRODUCTION PROCESS.....	7
4	COST EVALUATIONS	8
4.1	INTRODUCTION	8
4.2	H ₂ AND NH ₃ PRODUCTION COST.....	8
4.2.1	<i>H₂ production cost.....</i>	8
4.2.2	<i>NH₃ production cost.....</i>	9
4.3	COST OF NH ₃ PRODUCTION, INCLUDING TRANSPORT AND STORAGE, FOR FOB DELIVERY.....	10
4.4	COMPARISON WITH AMMONIA PRICE ON US MARKET.....	10
4.5	ELECTRICITY PRODUCTION COST VIA GREEN NH ₃ CCGT VERSUS CLASSICAL ELECTRICITY PRODUCTION COST IN THE U.S.	11
4.6	COST OF NH ₃ PRODUCTION, INCLUDING INSURANCE AND FREIGHT, FOR CIF DELIVERY IN EUROPE...	11
4.7	ELECTRICITY PRODUCTION COST VIA GREEN NH ₃ CCGT VERSUS RENEWABLE ENERGIES IN EUROPE	12
5	EFFICIENCY OF THE PROCESS VERSUS EFFICIENCY OF COAL POWER PLANT.....	13
6	SEQUESTRATION POTENTIAL OF CARBON DIOXIDE.....	14
6.1	POTENTIAL	14
6.2	REFERENCES.....	14
7	MARKETING.....	15
8	CONCLUSION	16
9	BIBLIOGRAPHY	17
	APPENDIX 1 - COMPUTATION DETAILS	20
	APPENDIX 2 – LIST OF NOTATIONS.....	25

1 Introduction

The contribution of renewable energy sources to the production of green electricity is well known.

However, the difficulty in storing the electricity produced handicaps those faced with fossil fuels that may be stored in solid or liquid form, but with CO₂ emissions.

On the other hand the United States has large coal reserves.

The question then arises: can coal be transformed into a CO₂ free liquid fuel as a new feedstock for power plants?

Coal *gasification* electricity power plants are now operating commercially in the United States and other countries with well known environmental and efficiency benefits.

A gasifier differs from a combustor in a classical power plant. In a combustor, the coal is completely burnt by air. In a gasifier, the oxidizer supplied is insufficient for complete combustion of the coal. In a modern gasifier, coal is exposed to air or oxygen and steam under high temperature and pressure. Under these conditions, a mixture of carbon monoxide, hydrogen and other gaseous compounds is produced. This gas mixture is further converted into synthesis gas, or 'syngas', for the production of electrical power, steam and basic chemicals such as hydrogen.

These *Integrated Gasification Combined Cycle* power plants can operate with subsequent carbon capture and storage.

Green electricity in this case is delivered to the grid and the CO₂ problem seems to be satisfactorily solved.

Except that in some cases there is no grid or the grid is saturated.

There is obviously no grid available from coal gasification plants in remote or overseas countries.

Coal gasification with subsequent carbon capture and storage could in, those cases, be transformed into *green ammonia fuel* to serve as *feedstock* for power plants.

Our study focuses on the production of hydrogen from coal for its conversion to ammonia and, after storage and transport, its use into a Gas Turbine for electricity production. This is visualized under Figure 1.

2 Report objectives

This report intends to demonstrate that green ammonia produced from coal gasification with carbon capture and storage is, in various circumstances, a competitive fuel for Combined Cycle Gas Turbine power plants.

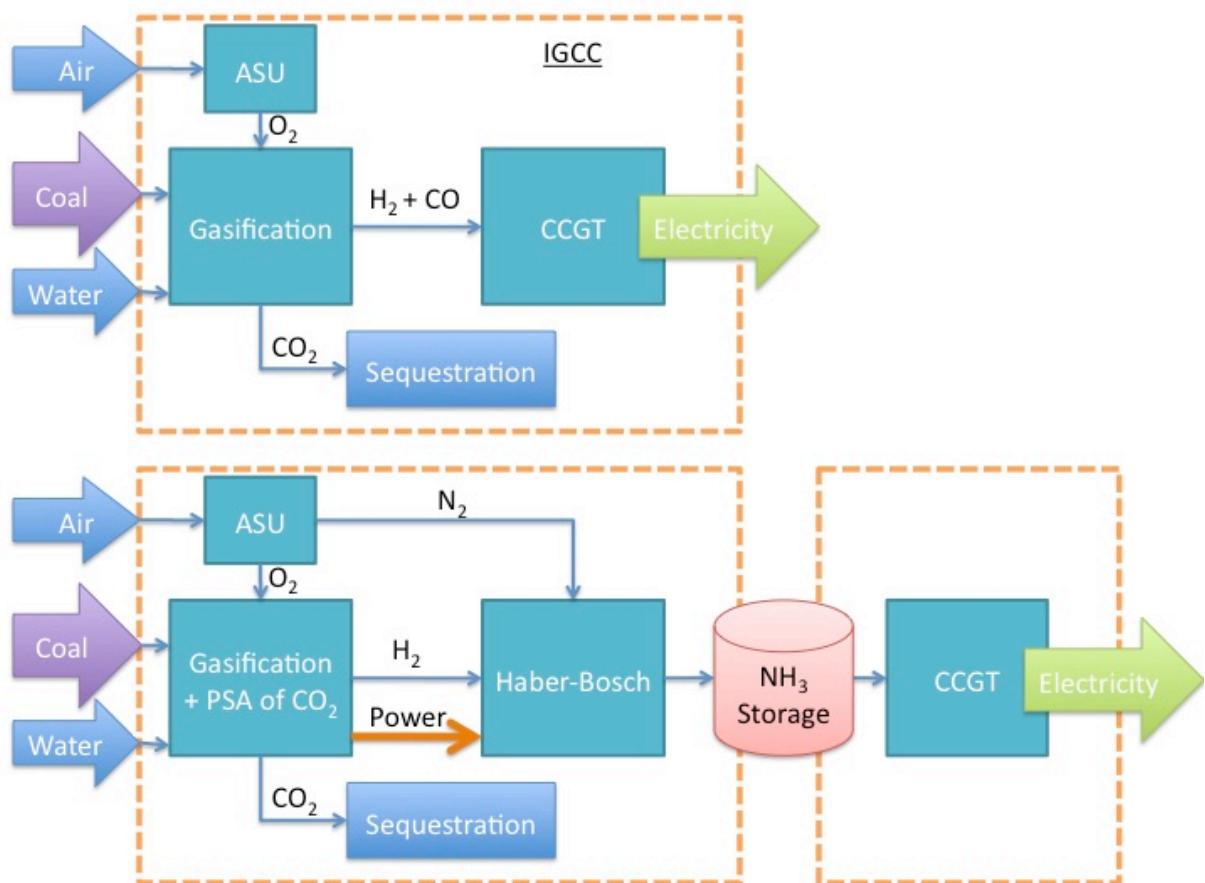
Implemented on a large scale it can contribute to the reduction of fossil fuel imports.

The processes for coal transformation into green ammonia and then into green electricity are explained in the section chapter 3.

In chapter 4, the study reports the economic interest of green ammonia:

- supplied as feed stock for Combined Cycle Gas Turbines in the United States
- exported in Europe to supplement renewable energies sources
- as a storable power vector complementing wind and solar power.

3 Green ammonia production from coal


3.1 Description of the ammonia production process

The goal of the process is, in a first step, to convert coal to NH₃ fuel and, in a second step, to burn this fuel in a Combined Cycle Gas Turbine to produce green electricity. The two steps can be separated in time and space.

CO₂ capture and sequestration are foreseen at the level of the gasification where CO₂ outputs alone in a pure stream. This will avoid the need of a CO₂ segregation process that is needed in a classical post combustion CO₂ capture process to separate CO₂ from nitrogen (N₂).

This process is somehow comparable to the IGCC power plants with the noticeable difference that the power generation is replaced by an Haber-Bosch Synloop to produce ammonia. The electricity generation can be located away or even abroad. Figure 1 illustrates both IGCC process and the process proposed in this study.

Figure 1 : Process overview and comparison with the IGCC with sequestration process

The process feedstock are Coal, Water and Air.

The intermediate outputs are green ammonia fuel for CCGT power plants, sequestered CO₂, slag and sulfur.

The final output of the process is green electricity.

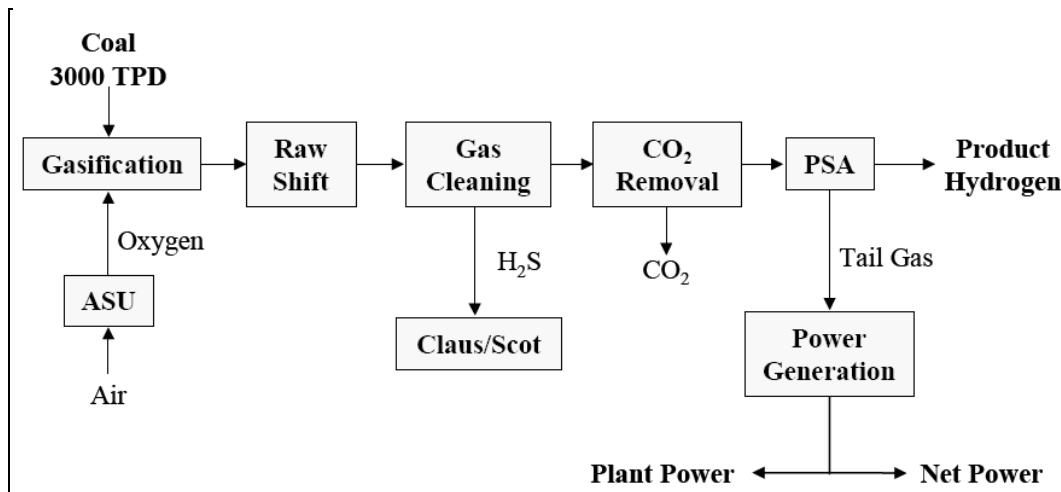
The process is made of four major steps:

1. Coal gasification;
2. CO₂ capture and sequestration;
3. Ammonia production (Haber-Bosch);
4. Efficient and carbon-free electricity production in a CCGT.

It is important to note that the Step 1, 2 and 3 are preferably associated in one factory located in an area with sequestration potential.

There is no need of proximity of this plant with the coal mine and or the CCGT power plant.

This process has two major advantages.


- It takes full advantage of the CCGT power plants : high efficiency, high flexibility and low emissions (SO₂, NO_x, Dust) .
- It contributes to an easy removal of CO₂ because it is not mixed with nitrogen that is present in a classical combustion.

3.2 Gasification: H₂ production process

This section presents the GE Energy quench gasifier (former Texaco)

The GE Energy quench gasification is presented on Figure 2 and includes conventional water-gas shift, cold gas cleaning, CO₂ removal and pressure swing adsorption (PSA). The tail gas of the PSA unit feeds a power generation gas turbine. Hydrogen outputs from the PSA.

Figure 2: H₂ production process with GE Energy gasifier

Source: Hydrogen from coal [36]

3.3 Carbon storage and sequestration

The carbon capture is already included in the gasification process.

This report doesn't give details on the storage and sequestration. Nevertheless the economical study includes the cost evaluation of these steps.

3.4 NH₃ production process

The ammonia production process used in this study is the classical Haber-Bosch one.

A stoichiometric mixture of hydrogen and nitrogen is needed for the conversion of the gas mixture to ammonia.

Hydrogen is issued from the gasification process and nitrogen from the air separation unit and from an additional controlled input of air.

The energy necessary to run this process is provided by the excess of energy from the gasification process.

4 Cost Evaluations

4.1 Introduction

The competitiveness of green NH₃ fuel versus renewable energy sources in the United States and Europe is assessed in this chapter.

For this purpose, green NH₃ Combined Cycle Gas Turbine electrical power costs are compared with classical electricity production costs.

In the first step, H₂ and Green NH₃ production costs are computed in sections 4.2.1 and 4.2.2 respectively.

In the 2nd step, Green NH₃ production costs, including transport and storage for FOB delivery, are calculated in section 4.3. A comparison with the NH₃ price on the US market is given in section 4.4.

In the 3rd step, Section 4.5 deals with the green NH₃ CCGT electrical power costs versus the electricity production costs in the US.

In the 4th step, Green NH₃ production costs including insurance and freight for CIF delivery in Europe are calculated in section 4.6.

In the 5th step, section 4.7 deals with green NH₃ CCGT electrical power versus the electricity production costs of classical and renewable energies in Europe.

Each cost computation is made for 6 different coal qualities. The first coal quality is the one used in the reference gasification process [36]. The next five apply to coal extracted in the US. Their price and heat values can be found in [48]. This is summarized in Table 1.

Table 1 : Description of Coal used in this study

ID	#0	#1	#2	#3	#4	#5
Origin	<i>Reference Coal</i>	US Central Appalachian	US Northern Appalachian	Illinois Basin	Powder River Basin	Uinta Basin
Year/reference	1998 [36]	2012 [48]	2012 [48]	2012 [48]	2012 [48]	2012 [48]
Price [\$/t]	27.30	61.84	70.99	51.26	9.37	39.13
HHV [Btu/lb]	10,665	12,500	13,000	11,800	8,800	11,700

4.2 H₂ and NH₃ production cost

4.2.1 H₂ production cost

The production cost of H₂ is calculated in Appendix 1.

Basic assumptions are:

- Gasification process: GE Energy

- Coal input : 3000 t/d as a basis for a coal with a HHV of 10665 Btu/lb
- A H₂ production of 281.1 t/d

A breakdown of the daily production cost include the coal and water consumptions, the CO₂ storage, the amortization and operating costs.

They enable to compute the cost of H₂ in \$/t and are summarized in Table 2.

Important Note: This evaluation includes the CO₂ avoided cost representing the taxes relevant to a hydrogen production from methane (CH₄) without sequestration.

Table 2 : Production cost of H₂ in a production facility of 281.1 t/d

ID	#0	#1	#2	#3	#4	#5
Type of Coal	<i>Reference Coal</i>	US Central Appalachian	US Northern Appalachian	Illinois Basin	Powder River Basin	Uinta Basin
Coal consumption [t/d]	3,000	2,560	2,461	2,711	3,636	2,735
Coal cost [\$/d]	81,900.00	158,284.81	174,714.48	138,981.61	34,066.12	107,011.11
Annuity [\$/d]	152,355.99	152,355.99	152,355.99	152,355.99	152,355.99	152,355.99
Water cost [\$/d]	9,000.00	9,000.00	9,000.00	9,000.00	9,000.00	9,000.00
CO ₂ Storage [\$/d]	47,526.09	47,526.00	47,526.00	47,526.00	47,526.00	47,526.00
Total daily cost [\$/d]	290,782.08	367,166.79	383,596.47	347,863.59	242,948.11	315,893.10
H₂ cost [\$/t]	1,034.44	1,306.18	1,364.63	1,237.51	864.28	1,123.78
Avoided Cost of CO ₂ [\$/t] (*)	75.90	75.90	75.90	75.90	75.90	75.90
Adjusted H₂ cost [\$/t]	958.54	1,230.28	1,288.72	1,161.61	788.37	1,047.87

(*) Base for computation : 24\$/t_{CO₂} ; 281.1 t_{H₂}/day ; avoided CO₂ compared to ammonia produced from Natural Gas : 889 t_{CO₂}/day.

4.2.2 NH₃ production cost

The production cost of NH₃ is calculated in Appendix 1.

Basic assumptions are:

- Production process: Haber-Bosch
- H₂ input: 281.1 t/d
- NH₃ output: 1593 t/d

A breakdown of the daily production cost include H₂ cost, amortization costs and operating costs.

They enable to calculate the cost of NH₃ in \$/t and are summarized in Table 3.

Table 3: Cost of NH₃ production in a production facility of 1593 t/d

ID	#0	#1	#2	#3	#4	#5
Type of Coal	Reference Coal	US Central Appalachian	US Northern Appalachian	Illinois Basin	Powder River Basin	Uinta Basin
H ₂ cost [\$/t]	958.54	1,230.28	1,288.72	1,161.61	788.37	1,047.87
H ₂ cost [\$/d]	269,446.08	345,830.89	362,260.56	326,527.69	221,612.20	294,557.19
Annuity cost [\$/d]	44,812.86	44,812.86	44,812.86	44,812.86	44,812.86	44,812.86
Operating cost [\$/d]	24,799.81	24,799.81	24,799.81	24,799.81	24,799.81	24,799.81
NH ₃ production cost [\$/d]	344,557.65	344,558.65	344,559.65	344,560.65	344,561.65	344,562.65
NH₃ production cost [\$/t]	217.20	266.13	276.66	253.77	186.56	233.29

4.3 Cost of NH₃ production, including transport and storage, for FOB delivery

The Iowa State University study [18] assesses the cost for the pipeline transport of ammonia over a distance of 1,610 km and its storage for 45 days at \$34/t and \$32/t respectively, i.e. \$66/t in total for 2007 or 71.6 \$/t for 2011 [47]. This cost added to the costs presented in the previous table gives the FOB price of NH₃.

Table 4: NH₃ cost delivered FOB

ID	#0	#1	#2	#3	#4	#5
Type of Coal	Reference Coal	US Central Appalachian	US Northern Appalachian	Illinois Basin	Powder River Basin	Uinta Basin
FOB cost of NH ₃ , 2011[\$/t]	288.80	337.73	348.26	325.37	258.16	304.89

4.4 Comparison with ammonia price on US market

As we can see thereafter, ammonia produced by coal gasification with CCS is competitive with fossil NH₃ sold on the world market.

Table 5: Green ammonia produced from coal compared to market price

Fossil NH ₃ CFR Tampa price, 2011 [43]	560 \$/t
Green NH ₃ FOB cost, 2011, depending on coal price, refer to Table 4	258.33 to 348.98 \$/t

4.5 Electricity production cost via green NH₃ CCGT versus classical electricity production cost in the U.S.

The detailed calculation of the electricity production cost via a combined cycle using NH₃ in the U.S. is presented in Appendix 1 and summarized in the following table

Table 6: Electricity produced from Ammonia

ID	#0	#1	#2	#3	#4	#5
Type of Coal	<i>Reference Coal</i>	US Central Appalachian	US Northern Appalachian	Illinois Basin	Powder River Basin	Uinta Basin
Electricity cost [\$/MWh]	116.67	134.20	137.98	129.77	105.68	122.43

Table 7: Electricity production cost comparison for 2011 in the U.S.

Electricity production	Cost [\$/MWh]
Natural Gas CCGT [1]*	79
Natural Gas CCGT with CCS [1]*	96
Green NH ₃ CCGT	106 to 138

*adjusted to 2011\$, [47]

It appears that electricity production cost from green ammonia with CCS is up from 10% to 43% against the electricity production cost from natural gas with CCS.

Electricity production cost from green NH₃ appears to be in line with photovoltaic electricity and in line with electricity from solid biomass and off-shore wind in the United States.

4.6 Cost of NH₃ production, including insurance and freight, for CIF delivery in Europe

Reference [53] provides CIF and FOB numbers for Anhydrous Ammonia US imports from the major supply countries that are Trinidad and Tobago, Canada, Russia, Ukraine, and Venezuela. The difference between CIF and FOB values gives the cost of insurance and freight. Between 2005 and 2009 insurance and freight costs fluctuate between 60\$/t_{NH₃} and 75.75\$/t_{NH₃}.

In this study, we estimate the insurance and freight for transportation from the US to Europe at 70\$/t_{NH₃}.

Table 8: NH₃ cost delivered CIF in Europe

ID	#0	#1	#2	#3	#4	#5
Type of Coal	<i>Reference Coal</i>	US Central Appalachian	US Northern Appalachian	Illinois Basin	Powder River Basin	Uinta Basin
CIF cost of NH ₃ , 2011 [\$/t]		358.80	407.73	418.26	395.37	328.16
						374.89

4.7 Electricity production cost via green NH₃ CCGT versus renewable energies in Europe

The detailed calculation of the electricity production cost via a combined cycle using NH₃ in Europe is presented in Appendix 1.

Table 9: Electricity production cost via green NH₃ CCGT for 2011 in Europe

ID	#0	#1	#2	#3	#4	#5
Type of Coal	<i>Reference Coal</i>	US Central Appalachian	US Northern Appalachian	Illinois Basin	Powder River Basin	Uinta Basin
Electricity cost [\$/MWh]		132.62	148.40	151.80	144.41	122.73
						137.81

Table 10: Electricity production cost in Europe [1]*

Production way	Feedstock cost in 2008	Production cost \$/MWh in 2008	Production cost \$/MWh in 2011**	Country
Hydroelectric	/	74	75	Sweden
Solid biomass	US\$69.06/MWh	129	131	Netherlands
Biogas	US\$2.65/MWh	79	80	France
On-shore wind	/	90	91	France
Off-shore wind	/	138	139	Germany
Photovoltaic	/	287	289***	France
Natural Gas CCGT(incl. carbon Cost)[1]	/	90	91	Belgium

* interest rate of 5%,

** adjusted to 2011 with [51]

***PV electricity production market knows a fast decrease of its costs. Therefore production cost to take into account is evaluated to 0.15 \$/kWh in 2011 depending on the sun exposure.

Electricity production cost from green NH₃ appears to be in line with photovoltaic electricity and in line with electricity from solid biomass and off-shore wind in Europe.

5 Efficiency of the process versus efficiency of coal power plant

At Table 11, the calculation of the energy efficiency of the global process is performed. For comparison, Table 12 provides efficiency figures for other coal fired power plants.

Table 11: Energy efficiency of the global process

Efficiency: Coal to electricity	
Coal to hydrogen (incl. CCS), % HHV [36]	59
Hydrogen to ammonia, % LHV [18]	81.8
Ammonia to electricity, % LHV [39]	60
Total energy efficiency, %	28,98

Table 12: Energy efficiency of coal power plant in the USA

Coal-fired power plant	Efficiency, % LHV
Pulverised coal PCC without CCS [1, USA]	39
IGCC without CCS [1, USA]	39
IGCC with CCS [1, USA]	32
IGCC with CCS [58]	33-35

The global process efficiency appears to be comparable to the one of a IGCC (Integrated Gasification Combined Cycle) with CCS (Carbon Capture & Storage).

6 Sequestration potential of carbon dioxide

6.1 Potential

Geological storage [42]: injecting CO₂ in dense form into a rock formation below the earth's surface. Porous rock formations that hold or have previously held fluids are particularly suitable for CO₂ storage.

Geological storage options [42]:

- Storage in depleted oil and gas reservoirs
- Use of CO₂ in enhanced oil and gas recovery (EOR)
- Deep saline formations (on- or off-shore)
- Enhanced coal bed methane recovery (demonstration phase)

“The U.S. Department of Energy (DOE) estimates overall potential for storage in the U.S. to be at 3,600 to 12,900 billion metric tons of CO₂. Texas and Louisiana have the highest potential, while states like Maine, Vermont, and Wisconsin have no storage potential at all.” [54]

6.2 References

Project	Sequestration capacity
The Mountaineer Carbon Capture and Sequestration Project	100 kt CO ₂ /year
Maasvlakte CCS Project – ROAD (2015) 1070 MWe	1100 kt CO ₂ /year (90%)

7 Marketing

The green ammonia market is closely linked to the CO₂ market.

The target is the reduction of CO₂ emissions.

Penalizing CO₂ emissions is one way of achieving this objective.

Subsidizing green ammonia production is another route.

Both routes are hardly supported by the different countries.

The 'quotas idea' on the contrary could receive global agreement.

How does it work?

A Central Authority fixes a limit for the *global* CO₂ emissions.

A 'quota' is allocated to the companies limiting their *specific* CO₂ production.

These quotas can be purchased or sold.

How does it work for green ammonia?

If green ammonia, for instance, is bought by a European Power Plant its CO₂ quota permit will be increased by the relevant avoided CO₂ emissions. The resulting saved quota will become a free for trade benefit for the Company.

The 'quotas system' ensures flexibility and incentives for the green ammonia market with the guarantee of a *global* pollution limit. Since this is an upper limit it will not be reached.

In addition, this global pollution limit can be reduced gradually by the Central Authority.

The quota system is therefore an efficient tool for reducing CO₂ emissions.

8 Conclusion

Going green deserves a serious debate. We have to pave the way for adequate solutions for the CO₂ emissions problem.

The first positive answer is given by the renewable and CO₂-free energies: hydraulic, geothermal, biomass, wind and solar.

They are commonly accepted around the world.

Their *intermittent* action is so far complemented by the *continuous* action of *storable* fossil energies which, unfortunately, are also responsible for CO₂ emissions.

The CO₂ emissions problem is consequently not completely solved.

This study proposes *green ammonia from coal* as a substitute fuel for the fossil energies.

The CO₂-free emissions, storability and competitiveness represent its main *worldwide* benefits.

Green ammonia production *costs* ranging from 258 to 349 \$/t FOB US port must be compared with the non-green ammonia market *price* assessed at 560 \$/t FOB US port.

Biogas, off-shore wind and solar energy costs in Europe, respectively 80, 139, 289 \$/MWh, have to be compared with green ammonia energy costs ranging from 123 \$/MWh for coal from the Powder River Basin to 152 \$/MWH for coal from US Northern Appalachian.

The United States, China and Russia are all potential *producers* of green ammonia from coal. All these countries would find additional benefits in green ammonia since it replaces imported fossil fuels, ensures national energy independence, extends the energy-mix target, presents competitive green ammonia versus non-green ammonia on the international market and promotes the coal economy. Huge coal reserves, geographical situation, technology, economy and ecological concerns place the United States in a leading position in this respect.

On the other hand potential *consumer-countries* will find additional benefit in the extension of the green-energy-mix target.

Last but not least, the 'CO₂ quota regulations' of some countries might be extended to other countries in order to reach an *international agreement* beneficial to all. Widely accepted in the European Community, the CO₂ quota regulations represent a serious asset for a green ammonia trade kick-off between the United States and the European Union.

9 Bibliography

- [1] International Energy Agency (IEA), Nuclear Energy Agency (NEA), *Projected Costs of Generating Electricity - 2010 Edition - Executive Summary*
- [2] Freris L., Infield D., *Les énergies renouvelables pour la production d'électricité*, Dunod, Paris, 2009
- [3] PB Power, *Powering the nation* Update 2010
- [4] The royal academy of engineering (UK), *The cost of generating electricity*, 2004
- [5] IEA PVPS, *Energy from the desert-Executive Summary*, 2009
- [6] Israel-India steering committee, *Energy tower for producing electricity and desalinated water without a collector*, 2001
- [7] Sixth Framework Programme, New Energy Externalities Developments for Sustainability (NEEDS), *Cost development-an analysis based on experience curve*, 2004-2006
- [8] Quoilin S., *Les centrales solaires à concentration*, 2007, Université de Liège
- [9] Van Ryzin J, Grandelli P, Lipp D. et al., *The hydrogen economy of 2050: OTEC driven?*, Oceans (2005) 3:2675-2682
- [10] Plocek T., laboy M., Marti J., *Ocean thermal energy conversion (OTEC): technical viability, cost projections and development strategies*, 2009, Offshore Technology Conference
- [11] A. Rabl, J.V. Spadaro, *Les coûts externes de l'électricité*, Revue de l'énergie, No.525, Mars-Avril 2001
- [12] Ivy J., *Summary of electrolytic hydrogen production*, Milestone completion report, NREL/MP-560-36734, Sept 2004
- [13] Statoil, *HydrogenTechnologies: World leader in electrolysis for hydrogen solutions*, 2009
- [14] Sixth Framework Programme, NEEDS, *Generation, of the energy carrier hydrogen. In context with electricity buffering generation through fuel cells*, 2004-2008
- [15] Kroposki et al., *Electrolysis: Information and opportunities for electric power utilities*, NREL, technical report, NREL/TP-581-40605, September 2006
- [16] Bello B., Junker M., *Large scale electrolyzers*, Alphea hydrogene, 2006
- [17] Sigurvinson J., Werkoff F., *On the cost of the hydrogen produced by alkaline electrolysis*, Proceedings International Hydrogen Energy Congress and Exhibition IHEC2005
- [18] Bartels J., Pate M., *A feasibility study of implementing an Ammonia Economy*, Iowa State University, December 2008
- [19] Gruhn S., *Wind to ammonia*, Freedom Fertilizer
- [20] *Ammonia Prices and Pricing Information*, sur <http://www.icis.com/v2/chemicals/9075153/ammonia/pricing.html>, page consultée le 28/02/11

[21] U.S. Energy Information Administration – Independent Statistics and Analysis, *Gasoline and Diesel Fuel Update*, sur <http://tonto.eia.doe.gov/oog/info/gdu/gasdiesel.asp>, page consultée le 06/03/11

[22] Porter S., *Hydrogen generation from electrolysis: 100 kgH₂/day trade study*, Proton energy systems, June 2008

[23] Ganley et al., *Solid State Ammonia Synthesis*, NHThree LLC, October 2007

[24] International Energy Agency, *World Energy Outlook 2009*

[25] International Energy Agency, *Key World Energy Statistics*, 2010

[26] BP, *Statistical Review of World Energy 2010*

[27] World Energy Council, *Comparison of energy systems using life cycle assessment*, July 2004

[28] GIEC, *Bilan 2007 des changements climatiques: Rapport de synthèse*, 2008

[29] Energy Information Administration, *Annual Energy Outlook 2010*, December 2009, sur http://en.wikipedia.org/wiki/Cost_of_electricity_by_source, page consultée le 14/09/10, article mis à jour le 13/09/10

[30] California Regulatory Agencies, 2008, sur http://www.sourcewatch.org/index.php?title=Comparative_electrical_generation_costs, page consultée le 04/08/10, article mis à jour le 27/01/10

[31] Idaho National Laboratory, 2005, sur http://hydropower.inel.gov/hydrofacts/plant_costs.shtml, consultée le 05/11/10, article mis à jour le 18/07/10

[32] Ocean Thermal Bob Energy (www.seasolarpower.com), sur <http://en.wikipedia.org/wiki/OTEC>, page consultée le 27/07/10, article mis à jour le 27/07/10

[33] World Energy Council, *2010 Survey of Energy Resources*

[34] Ammonia Fuel Network, <http://www.ammoniafuelnetwork.org/>

[35] Procédé Haber, sur http://fr.wikipedia.org/wiki/Proc%C3%A9d%C3%A9_Haber

[36] Gray D., Tomlinson G., *Hydrogen from coal*, Mitretek Technical Paper, MTR 2002-31, July 2002

[37] Vercruyse E., De Neyer E., *Ammonia, a renewable fuel with zero CO₂ emissions*, Probatex sc, July 2011

[38] Starr F., *Integrated Gasification Combined Cycle for Carbon Capture, IGCC plus CCS – an objective analysis*, a Claverton Group Conference Paper, February 2009

[39] Karabeyoglu A., Evans B., Selection of NH₃ for Gas Turbine Use, Space Propulsion Group Inc., 8th NH₃ Conference, September 2011

[40] CCS Maasvlakte (ROAD-project), *Concept-notitie reikwijdte en detailniveau*, September 2010

[41] Maasvlakte CCS Project, *Non-confidential FEED study report* – Special report for the Global Carbon Capture and Storage Institute, November 2011

[42] Rapport spécial du GIEC, Piégeage et stockage du dioxyde de carbone, Résumé à l'intention des décideurs et Résumé technique, septembre 2005

[43] ICIS pricing, *Ammonia Prices and Pricing Information*, September 2011, <http://www.icis.com/Articles/2007/11/01/9075153/ammonia-prices-and-pricing-information.html>

[44] Chemical Engineering, Current economic trends, http://www.che.com/business_and_economics/plant_cost_index/, 26/06/12

[45] Curry Hydrocarbons Inc., Chemical Engineering Plant Cost Index, <http://www.curryhydrocarbons.ca/downloads.htm>, 26/06/12

[46] BP, Statistical Review of World Energy 2012

[47] <http://www.usinflationcalculator.com/>

[48] U.S. Energy Information Administration, *Coal News and Markets*, http://www.eia.gov/coal/news_markets/, 25 June 2012

[49] IEA, *Key World Energy Statistics*, 2011

[50] European Central Bank, Euro exchange rates USD, <http://www.ecb.int/stats/exchange/eurofxref/html/eurofxref-graph-usd.en.html>

[51] http://france-inflation.com/calculateur_inflation.php

[52] Iowa Energy Center, *NH₃ fuel brochure*, <http://www.iowaenergycenter.org/grant-and-research-library/nh3-fuel-brochure/>

[53] TradeData International Pty Ltd, *U.S.A. imports of anhydrous ammonia*, TradeData International Analysis Report, 18 November 2009

[54] World Resources Institute, *Carbon Capture and Sequestration (CCS) and Underground Capacity*, April 2010, <http://www.wri.org/stories/2010/04/carbon-capture-and-sequestration-ccs-and-underground-capacity>

[55] Pour la Science, *Energies à volonté – Rendre le charbon propre*, Dossier 69, p24-29, octobre-décembre 2010

[56] Holt N., EPRI, *Gasification & IGCC – Design Issues & Opportunities*, presented at the GCEP Advanced Coal Workshop, Provo – Utah, March 2005

[57] Maurstad O., *An Overview of Coal based Integrated Gasification Combined Cycle (IGCC) Technology*, Laboratory for Energy and the Environment, September 2005

[58] Dr Fred Starr, *Integrated Gasification Combined Cycle for Carbon Capture and Storage*, Claverton Energy, February 2009

Appendix 1 - Computation details

This appendix provides details of computations. Column #0 figures are eighter figures extracted of ref [36] that studies the gasification of coal with sequestration of CO₂ and by mean of the GE Energy quench gasifier. Column #0 also contains common data and figures that are not dependent of the type of coal. Column #1 to #5 contain computation for different coal currently extracted and sold in the United States.

ID	#0	#1	#2	#3	#4	#5
Type of Coal	Ref Coal used by ref [36]	US Central Appalachian	US Northern Appalachian	Illinois Basin	Powder River Basin	Uinta Basin

1. Coal description						
(description of the coal used as feed stock for computation in this study)						
Reference	1998 [36]	2012 [48]	2012 [48]	2012 [48]	2012 [48]	2012 [48]
Price [\$/t]	27,30	61,84	70,99	51,26	9,37	39,13
HHV [Btu/lb]	10.665	12.500	13.000	11.800	8.800	11.700
HHV Ratio (reference is Coal #0)	1,00	1,17	1,22	1,11	0,83	1,10

2. Hydrogen (H ₂) cost computation	-	-	-	-	-	-
H2 characteristics						
LHV [kJ/kg]	120.500,00					
HHV [kJ/kg]	141.000,00					
Densité [kg/Nm ³]	0,09					
Gasification of Coal to H₂						
Gasifier technical data (ref [36])						
Technology: GE Energy quench gasifier						
Carbon Sequestration method: PSA (pressure swing adsorption)						
Carbon Sequestration percentage	87%					
Electricity Production: HRSG (heat recovery steam generator)						
HHV efficiency %	59,00					
Extra electric power [MW]	26,90					
H ₂ production [t/day]	281,10					
Capital Cost						
Reference instalation : [18], table7, Gray & T.1; NH ₃ Plant size of 281 t/d						
Capital cost 2007 [Million \$]	562,00					
Capital Cost Index 2011/2007	1,11					
Capital cost MM en 2011	626,50					
IRR	0,05					
Plant life	25,00					

ID	#0	#1	#2	#3	#4	#5
Type of Coal	Ref Coal used by ref [36]	US Central Appalachian	US Northern Appalachian	Illinois Basin	Powder River Basin	Uinta Basin
Capacity factor	0,85					
Operating Cost						
Operating cost over plant lifetime, 1998 [M\$] ([36] Net operating cost - Coal)	26,40					
Cost Index 2011/1998	1,50					
Operating cost over plant lifetime, 2011 [M\$]	39,70					
Annuity						
Annuity [\$/d] (including the capital cost and the Operating cost over plant lifetime)	152.355,99					
Coal						
Price [\$/t]	27,30	61,84	70,99	51,26	9,37	39,13
Coal consumption (=3000 / HHV Ratio) [tons/day]	3.000,00	2.559,60	2.461,15	2.711,44	3.635,80	2.734,62
Coal cost [\$/d]	81.900,00	158.284,81	174.714,48	138.981,61	34.066,12	107.011,11
Water						
Water consumption [m ³ /d]	9.000,00	9.000,00	9.000,00	9.000,00	9.000,00	9.000,00
Water cost [\$/d]	9.000,00	9.000,00	9.000,00	9.000,00	9.000,00	9.000,00
CO₂ Management						
Cost of CO ₂ transport [\$/tCO ₂]	1,00					
Cost of CO ₂ sequestration [\$/tCO ₂]	3,00					
Cost of monitoring [\$/tCO ₂]	0,30					
Total CO ₂ cost 2002 [\$/tCO ₂]	4,30					
Total CO ₂ cost 2011 [\$/tCO ₂]	5,38					
CO ₂ to sequester [Mt _{CO₂} /y] (computed for the reference and estimated equal for other coal types)	3.224,35	3.224,35	3.224,35	3.224,35	3.224,35	3.224,35
CO ₂ to sequester [t _{CO₂} /d]	8.833,85	8.833,85	8.833,85	8.833,85	8.833,85	8.833,85
Cost of sequestration [\$/d]	47.526,09	47.526,09	47.526,09	47.526,09	47.526,09	47.526,09
Cost H2 2011 [\$/t]	1.034,44	1.306,18	1.364,63	1.237,51	864,28	1.123,78

2. Avoided CO₂ cost						
Assumption: cost of CO₂ [\$/t_{CO₂}]	24,00					
Avoided Cost of CO ₂ [\$/d]	21.336,00					
Avoided Cost of CO ₂ [\$/t _{NH₃}]	75,90	75,90	75,90	75,90	75,90	75,90
Adjusted H₂ cost [\$/t]	958,54	1.230,28	1.288,72	1.161,61	788,37	1.047,87

Note: this Adjusted cost of Hydrogen will be presented and taken into account as an alternative in the following computation.

3. Ammonia NH₃ Cost computation						
NH₃ characteristics						
LHV [kJ/kg]	18.646,00					
HHV [kJ/kg]	22.500,00					
Density [kg/Nm ³]	0,76					
Ammonia Plant technical Data						
Technology: Haber-Bosch						

ID	#0	#1	#2	#3	#4	#5
Type of Coal	Ref Coal used by ref [36]	US Central Appalachian	US Northern Appalachian	Illinois Basin	Powder River Basin	Uinta Basin
Mass efficiency H-B	98%					
Electricity consumption [kWh/kg _{NH3}]	0,39					
H2 consumption [kg/kg _{NH3}]	0,18					
Production [kg/d]	1.561.042,00					
Capital Cost						
Reference installation : [18], table12, Gray & T.1; NH3 Plant size of 1650 t/d						
Capital cost 2007 [\$]	203.000,00					
Capital Cost Index 2011/2007	1,11					
Capital cost 2011 [\$]	226.298,24					
Interest rate IRR	8,95					
Lifetime [years]	30					
Capacity factor	90%					
Operating Cost						
Annual O&M cost [% invest.]	4%					
O&M cost [\$/d]	24.799,81					
Annuity						
Annuity [\$/d]	44.812,86					
Annuity [\$/y]	14.721.025,85					
Electricity						
Electricity Cost [\$/kWh]	0,07					
Electricity consumption (of the H-B process) [kWh/d]	608.806,38					
Requisite power[MW]	25,37					
Net Power (including power recovered from the Gasification) [MW]	-1,53					
Electricity consumption (including energy recovered from the gasification) [kWh/d]	0,00					
Cost of electricity [\$/d]	0,00					
Hydrogen (H₂)						
H2 cost [\$/t]	1.034,44	1.306,18	1.364,63	1.237,51	864,28	1.123,78
<u>H2 cost (incl.CO₂ Avoided costs) [\$/t]</u>	<u>958,54</u>	<u>1.230,28</u>	<u>1.288,72</u>	<u>1.161,61</u>	<u>788,37</u>	<u>1.047,87</u>
H2 consumption [t _{H2} /d]	281,10					
H2 cost [\$/d]	290.782,08	367.166,89	383.596,56	347.863,69	242.948,20	315.893,19
<u>H2 cost (incl.CO₂ Avoided costs) [\$/d]</u>	<u>269.446,08</u>	<u>345.830,89</u>	<u>362.260,56</u>	<u>326.527,69</u>	<u>221.612,20</u>	<u>294.557,19</u>
Total						
Daily cost without transport [\$/d]	360.394,75	436.779,56	453.209,23	417.476,36	312.560,87	385.505,86
<u>Daily cost without transport (incl.CO₂ Avoided costs) [\$/d]</u>	<u>339.058,75</u>	<u>415.443,56</u>	<u>431.873,23</u>	<u>396.140,36</u>	<u>291.224,87</u>	<u>364.169,86</u>
Cost production NH3 2011 [\$/t]	230,87	279,80	290,32	267,43	200,23	246,95
<u>Cost production NH3 2011 (incl.CO₂ Avoided costs) [\$/t]</u>	<u>217,20</u>	<u>266,13</u>	<u>276,66</u>	<u>253,77</u>	<u>186,56</u>	<u>233,29</u>

4. Ammonia FOB Cost computation						
Transport And Storage of NH3 (transport over 1610 km storage during 45 days)						

ID	#0	#1	#2	#3	#4	#5
Type of Coal	Ref Coal used by ref [36]	US Central Appalachian	US Northern Appalachian	Illinois Basin	Powder River Basin	Uinta Basin
Transport & stockage cost 2007 [\$/t]	66,00					
Transport & stockage cost 2011 [\$/t]	71,60					
Cost of NH₃ FOB [\$/t]	302,47	351,40	361,92	339,03	271,83	318,55
Cost of NH₃ FOB (incl.CO₂ Avoided costs) [\$/t]	288,80	337,73	348,26	325,37	258,16	304,89

5. Ammonia CIF Europe Cost computation						
transport from FOB to CIF (evaluated according to [58]: mean value of the differences between CIF and FOB prices observed on US imports of NH ₃)	70,00					
NH₃ Cost CIF Europe, 2011 (incl.CO₂ Avoided costs) [\$/t]	358,80	407,73	418,26	395,37	328,16	374,89

6. CCGT NH ₃ USA						
CCGT characteristics						
Type	CCGT US					
Reference	[1]					
Puissance [MW]	400					
efficiency	54%					
Capacity Factor	85%					
Assumption						
Natural Gas to Ammonia conversion cost [% of investment]	10%					
Ammonia cost [\$/t]	288,80	337,73	348,26	325,37	258,16	304,89
Annual electricity production						
	2.978.400,0					
Annual production [MWh/y]	0					
Capital Cost						
Investment cost according to reference, 2008 [\$/kWe]	969,00					
adapted to ammonia fuel, 2010 [\$/kWe]	1.065,90					
Capital Cost Index 2011/2008	1,02					
Capital Cost, 2011 [\$/kWe]	1.084,98					
Interest rate	5%					
Lifetime in years	30					
	28.231.808,					
Annuity [\$/y]	65					
Cost of investment per MWh [\$/MWh]	9,48					
Operating Cost						
O&M, 2008 [\$/MWh]	3,61					
Index 2011/2010	1,02					
Operating Cost [\$/MWh] 2011	3,67					
Ammonia consumption						
Consommation [t/MWh]	0,36					
Cost, 2011 [\$/t]	288,80	337,73	348,26	325,37	258,16	304,89
Fuel cost [\$/MWh]	103,51	121,05	124,82	116,62	92,53	109,28
Total						
Cost of Electricity [\$/MWh]	116,67	134,20	137,98	129,77	105,68	122,43

ID	#0	#1	#2	#3	#4	#5
Type of Coal	Ref Coal used by ref [36]	US Central Appalachian	US Northern Appalachian	Illinois Basin	Powder River Basin	Uinta Basin
7. CCGT NH3 EU						
CCGT characteristics						
Type	CCGT EU					
Reference	[1]					
Puissance [MW]	800					
efficiency	60%					
Capacity Factor	85%					
Assumption						
Natural Gas to Ammonia conversion cost [% of investment]	10%					
Ammonia cost [\$/t]	358,80	407,73	418,26	395,37	328,16	374,89
Annual electricity production						
	5.956.800,0					
Annual production [MWh/y]	0					
Capital Cost						
Investment cost according to reference, 2008 [\$/kWe]	1.025,00					
adapted to ammonia fuel, 2010 [\$/kWe]	1.127,50					
Capital Cost Index 2011/2008	1,02					
Capital Cost, 2011 [\$/kWe]	1.147,68					
Interest rate	5%					
Lifetime in years	30					
	59.726.736,					
Annuity [\$/y]	57					
Cost of investment per MWh [\$/MWh]	10,03					
Operating Cost						
O&M, 2008 [\$/MWh]	6,73					
Index 2011/2008	1,02					
Operating Cost, 2011 [\$/MWh]	6,85					
Ammonia consumption						
Consommation [t/MWh]	0,32					
Cost, 2011 [\$/t]	358,80	407,73	418,26	395,37	328,16	374,89
Fuel cost [\$/MWh]	115,74	131,53	134,92	127,54	105,86	120,93
Total						
Coût [\$/MWh]	132,62	148,40	151,80	144,41	122,73	137,81

Appendix 2 – List of notations

- ASU: Air Separation Unit
- CCGT: Combined Cycle Gas Turbine
- CCS: Carbon Capture and Storage
- CIF: Cost, Insurance and Freight
- FOB: Free on Board or Freight on Board
- IGCC: Integrated Gasification Combined Cycle
- IPCC: Intergovernmental Panel on Climate Change